Chapter 3-Constructions: Part 1

In this lesson you will:

- learn what it means to create a geometric construction
- duplicate a segment and an angle using a straightedge and a compass
- construct a perpendicular bisector and a perpendicular to a line from a point not on the line

The compass, like the straightedge, has been a useful geometry tool for thousands of years. The ancient Egyptians used the compass to mark off distances. During the Golden Age of Greece, Greek mathematicians made a game of geometric constructions using only a compass and a straightedge.

In the previous chapters, you drew and sketched many figures. In this chapter, however, you'll construct geometric figures. The words sketch, draw, and construct have specific meanings in geometry. Sketch means you \qquad . You don't need to use any geometry \qquad . Draw means you should draw carefully and \qquad , using \qquad and \qquad . Construct means you must only use a and a \qquad . When you see the word "duplicate," it means to construct.

Investigation 3.1: "Duplicating a Segment and Duplicating an Angle"

A.) The complete construction for copying a segment, $\overline{A B}$, is shown above. Describe each stage of the process.
B.) Using the same process, duplicate segment EF.

Next, we will learn to duplicate an angle.

C.) The first two stages for copying $\angle D E F$ are shown above. Describe each stage of the process.
D.) What will be the final stage of the construction?
E.) Using the same process, duplicate the following angle.

Investigation 3.2: "Constructing the Perpendicular Bisector"
*Add "segment bisector" and "perpendicular bisector" to your dictionary. Also add the following conjectures to your conjecture list.

Perpendicular Bisector Conjecture (C-5)

If a point is on the perpendicular bisector of a segment, then it is \qquad from the endpoints.

Converse of the Perpendicular Bisector Conjecture (C-6)

If a point is \qquad from the endpoints of a segment, then it is on the perpendicular bisector of the segment.
« equidistant: the same distance

A.) The first two steps of constructing a perpendicular bisector are above. Describe the two steps.
B.) Do the same two steps as above, but on the other side of the segment.
C.) Draw a line through the two points found by the intersecting arcs. This is the perpendicular bisector.
D.) Construct the perpendicular bisector of the segment below.

Investigation 3.3: "Constructing Perpendiculars to a Line"

You already know how to construct perpendicular bisectors of segments. You can use that knowledge to construct a perpendicular from a point to a line.

A.) Step 1: Swing equal arcs from P that intersect the line on both "sides" of P. Label the two points A and B.
B.) How is $P A$ related to $P B$? What does this tell you about where point P lies? (Hint: See Conjecture C-6.)
C.) Construct the perpendicular bisector of $\overline{A B}$. (You already have the point on one side (P), so you just need to find the point on the other side.) Label the midpoint of $\overline{A B}$ as M.
D.) Suppose we labeled 3 randomly placed points on $\overleftrightarrow{A B}$ as Q, R, and S. See the graph below. Which distance is the shortest?

Based on this observation, complete the conjecture below, and then add it your conjecture list.

Shortest Distance Conjecture (C-7)

The shortest distance from a point to line is measured along the \qquad segment from the point to the line.
\qquad

