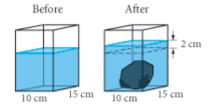
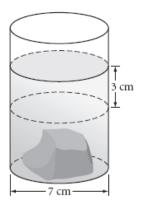
In this lesson you will:

- learn how the idea of displacement can be used to find the volume of an object
- learn how to calculate the density of an object


What happens if you step into a bathtub that is filled to the brim? If you add a scoop of ice cream to a glass filled with root beer? In each case, you'll have a mess! The volume of the liquid that overflows in each case equals the volume of the solid below the liquid level. This volume is called an object's \_\_\_\_\_\_. You can use this concept to find the volumes of irregularly shaped objects.

An important property of a material is its density. Density is the mass of matter in a given \_\_\_\_\_\_. You can find the mass of an object by weighing it. You calculate density by dividing the mass by the \_\_\_\_\_\_.


$$Density = \frac{mass}{volume}$$

\*Add "displacement" and "density" to your dictionary.

•Example 1: Mary Jo wants to find the volume of an irregularly shaped rock. She puts some water into a rectangular prism with a base that measures 10 cm by 15 cm. When the rock is put into the container, Mary Jo notices that the water level rises 2 cm because the rock displaces its volume of water. What is the volume of the rock?



•Example 2: When Tom puts a rock into a cylindrical container with diameter 7 cm, the water level rises 3 cm. What is the volume of the rock to the nearest tenth of a cubic centimeter?



•Example 3: A clump of metal with mass 351.4 grams is dropped into a cylindrical container, causing the water level to rise 1.1 cm. The radius of the base of the container is 3.0 cm.

a.) What is the density of the metal?

| Metal     | Density                |
|-----------|------------------------|
| Aluminum  | $2.81 \text{ g/cm}^3$  |
| Copper    | $8.97 \text{ g/cm}^3$  |
| Gold      | $19.30 \text{ g/cm}^3$ |
| Lead      | 11.30 g/cm             |
| Lithium   | $0.54 \text{ g/cm}^3$  |
| Nickel    | $8.89 \text{ g/cm}^3$  |
| Platinum  | $21.40 \text{ g/cm}^3$ |
| Potassium | $0.86 \text{ g/cm}^3$  |
| Silver    | $10.50 \text{ g/cm}^3$ |
| Sodium    | $0.97 \text{ g/cm}^3$  |

b.) Given the table to the right, and assuming the metal is pure, what is the metal?

•Example 4: A chemist is given a clump of metal and is told that it is sodium. She finds that the metal has a mass of 184.3 g. She places it into a nonreactive liquid in a cylindrical beaker with a base diameter of 10 cm. If the metal is indeed sodium, how high should the liquid level rise?