Lesson 10.5: Displacement and Density
In this lesson you will:

- learn how the idea of displacement can be used to find the volume of an object
- learn how to calculate the density of an object

What happens if you step into a bathtub that is filled to the brim? If you add a scoop of ice cream to a glass filled with root beer? In each case, you'll have a mess! The volume of the liquid that overflows in each case equals the volume of the solid below the liquid level. This volume is called an object's \qquad . You can use this concept to find the volumes of irregularly shaped objects.

An important property of a material is its density. Density is the mass of matter in a given \qquad . You can find the mass of an object by weighing it. You calculate density by dividing the mass by the \qquad .

$$
\text { Density }=\frac{\text { mass }}{\text { volume }}
$$

*Add "displacement" and "density" to your dictionary.
-Example 1: Mary Jo wants to find the volume of an irregularly shaped rock. She puts some water into a rectangular prism with a base that measures 10 cm by 15 cm . When the rock is put into the container, Mary Jo notices that the water level rises 2 cm because the rock displaces its volume of water. What is the

After
 volume of the rock?
-Example 2: When Tom puts a rock into a cylindrical container with diameter 7 cm , the water level rises 3 cm . What is the volume of the rock to the nearest tenth of a cubic centimeter?

-Example 3: A clump of metal with mass 351.4 grams is dropped into a cylindrical container, causing the water level to rise 1.1 cm . The radius of the base of the container is 3.0 cm .
a.) What is the density of the metal?
b.) Given the table to the right, and assuming the metal is pure, what is the metal?

Metal	Density
Aluminum	$2.81 \mathrm{~g} / \mathrm{cm}^{3}$
Copper	$8.97 \mathrm{~g} / \mathrm{cm}^{3}$
Gold	$19.30 \mathrm{~g} / \mathrm{cm}^{3}$
Lead	$11.30 \mathrm{~g} / \mathrm{cm}^{3}$
Lithium	$0.54 \mathrm{~g} / \mathrm{cm}^{3}$
Nickel	$8.89 \mathrm{~g} / \mathrm{cm}^{3}$
Platinum	$21.40 \mathrm{~g} / \mathrm{cm}^{3}$
Potassium	$0.86 \mathrm{~g} / \mathrm{cm}^{3}$
Silver	$10.50 \mathrm{~g} / \mathrm{cm}^{3}$
Sodium	$0.97 \mathrm{~g} / \mathrm{cm}^{3}$

-Example 4: A chemist is given a clump of metal and is told that it is sodium. She finds that the metal has a mass of 184.3 g . She places it into a nonreactive liquid in a cylindrical beaker with a base diameter of 10 cm . If the metal is indeed sodium, how high should the liquid level rise?
\qquad

