Lesson 11.7: Proportional Segments Between Parallel Lines

-In this lesson you will:

- explore the relationships in the lengths of segments formed when one or more lines parallel to one side of a triangle intersect the other two sides

In the figure below, $\overleftrightarrow{M T} \square \overline{L U}$. Is $\Delta L U V$ similar to $\triangle M T V$? \qquad A short proof can support this observation.

Given: $\Delta L U V$ with $\overleftrightarrow{M T} \square \overline{L U}$
Show: $\triangle L U V \sim \triangle M T V$

-Example 1: $\overline{E O} \square \overline{L N} \quad$ Find y.

Hint: Separate $\triangle E M O$ and $\triangle L M N$ so that you can see the proportional relationships more clearly. Is $\triangle E M O \sim \triangle L M N$? \qquad

Investigation 11.7.1: "Parallels and Proportionality"

In this investigation we'll look at the ratios of segments that have been cut by parallel lines.
A.) Separate each figure below into two triangles. Then find x and numerical values for the given ratios.
i.) $\overleftrightarrow{E C} \square \overline{A B}$
$x=$ \qquad
$\frac{D E}{A E}=$
$\frac{D C}{B C}=$

ii.) $\overrightarrow{K H} \square \overline{F G}$
$x=$ \qquad
$\frac{J K}{K F}=$

$\frac{J H}{H G}=$
iii.) $\overrightarrow{Q N} \square \overline{L M}$

$$
x=
$$

$\frac{P Q}{Q L}=$

$\frac{P N}{M N}=$
B.) What do you notice about the ratios of the lengths of the segments that have been cut by the parallel lines?

Is the converse true? That is, if a line divides two sides of a triangle proportionally, is it parallel to the third side? Let's see.
C.) Draw an acute angle, P. (Make sure point P is positioned near the bottom right of the available space below and extend the rays at least 14 cm .)

D.) Beginning at point P, use your ruler to mark off lengths of 4 cm and 5 cm on one ray. Label the points A and B.
E.) On the other ray, mark off lengths of 6 cm and 7.5 cm . Label the points C and D. Notice that $\frac{4}{5}=\frac{6}{7.5}$.
F.) Draw $\overline{A C}$ and $\overline{B D}$.
G.) $\angle P A C$ and $\angle P B D$ are \qquad angles.
H.) With a protractor, measure $\angle P A C$ and $\angle P B D$. What is true about the measures?

Are $\overline{A C}$ and $\overline{B D}$ parallel? \qquad
I.) Based on your observations, complete the conjecture:

Parallel/Proportionality Conjecture (C-98)

If a line parallel to one side of a triangle passes through the other two sides, then it divides the other two sides \qquad . Conversely, if a line cuts two sides of a triangle proportionally, then the line is \qquad to the third side.

Investigation 11.7.2: "Extended Parallel/Proportionality"
A.) Use the Parallel/Proportionally Conjecture to find each missing length.
i.) $\overline{F T} \square \overline{L A} \square \overline{G R}$

$$
x=\ldots \quad y=
$$

$$
\text { Is } \frac{F L}{L G}=\frac{T A}{A R} ?
$$

\qquad

ii.) $\overline{Z E} \square \overline{O P} \square \overline{I A} \square \overline{D R}$

$$
a=\quad b=
$$

$$
\text { Is } \frac{D I}{I O}=\frac{R A}{A P} \text { ? }
$$

\qquad Is $\frac{I O}{O Z}=\frac{A P}{P E}$?

B.) Compare your results with your group. Then complete the conjecture below.

Extended Parallel/Proportionality Conjecture (C-99)

If two or more lines pass through two sides of triangle parallel to the third side, then they divide the two sides \qquad _.
-Example 2: $p=$ \qquad
$q=$ \qquad

