Lesson 2.2: Finding the nth Term

In this lesson you will:

- learn how to write function rules for number sequences with a constant difference
- write a rule to describe a geometric pattern
- learn why a rule for a sequence with a constant difference is called a linear function

Consider the sequence $20,27,34,41,48,55,62, \ldots$ Notice that the difference between any two consecutive terms is \qquad . We say that this sequence has a \qquad of 7. To find the next two terms in the sequence, you could add 7 to the last term to get 69 , and then add 7 to 69 to get 76 . But what if you wanted to find the $200^{\text {th }}$ term? It would take a long time to list all the terms. If you could find a rule for calculating the nth term of the sequence for any number n, you could find the $200^{\text {th }}$ term without having to list all the terms before it. This rule is called the \qquad rule. In the investigation you will learn (actually review!) a method for writing a rule for any sequence that has a constant difference.

Investigation 2.2: "Finding the Rule"
A.) Complete each table below. Find the difference between consecutive values.

Differences:

n	1	2	3	4	5	6	7	8
$n-5$	-4	-3	-2					

n	1	2	3	4	5	6	7	8
$4 n-3$	1	5	9					

n	1	2	3	4	5	6	7	8
$-2 n+5$	3	1	-1					

n	1	2	3	4	5	6	7	8
$3 n-2$	1	4	7					

n	1	2	3	4	5	6	7	8
$-5 n+7$	2	-3	-8					

B.) Did you spot the pattern? If a sequence has constant difference 4, then the number in front of the n (the coefficient of n) is \qquad . In general, if the difference between the values of consecutive terms of a sequence is always the same, say m (a constant), then the coefficient of n in the formula is \qquad .

Let's return to the sequence at the beginning of the lesson.

Term	1	2	3	4	5	6	7	\ldots	n
Value	20	27	34	41	48	55	62	\ldots	

The constant difference is 7 , so you know part of the rule is $7 n$. How do you find the rest of the rule?
C.) The first term $(n=1)$ of the sequence is 20 , but if you apply the part of the rule you have so far, using $n=1$, you get $7 n=7(1)=7$, not 20 . So how should you fix the rule? How can you get from 7 to 20 ? What is the rule for this sequence?
D.) Check your rule by trying the rule with other terms in the sequence.
-Example 1: Find the rule for the sequence 7, 2, $-3,-8,-13,-18, \ldots$
The difference between the terms is always \qquad . So the rule is \qquad $n+$ something. To find the unknown "something" (represented by c) replace the n in the rule with a term number. Try $\mathrm{n}=1$ and set the expression equal to 7 (because that is what the first term is equal to). Solve for c.

$$
-5(1)+c=7
$$

Rules for sequences can be expressed using function notation. For this example, $f(n)=$ \qquad . In this case, function f takes an input value n, multiplies it by -5 , and adds \qquad to produce an output value.

You can find the value of any term in the sequence by substituting the term number for n into the function. To find the $20^{\text {th }}$ term of this sequence, for instance, substitute 20 for n.

$$
f(20)=-5(20)+12=
$$

Rules that generate a sequence with a constant difference are linear functions.
-Example 2: If you place 200 points on a line, into how many non-overlapping rays and segments does it divide the line?

Points dividing the line	1	2	3	4	5	6	\ldots	n	\ldots	200
Non-overlapping rays	2	2	2				\ldots		\ldots	
Non-overlapping segments	0	1	2				\ldots		\ldots	
Total	2	3	4				\ldots		\ldots	

