In this lesson you will:

• learn how to write function rules for number sequences with a constant difference

• write a rule to describe a geometric pattern

• learn why a rule for a sequence with a constant difference is called a linear function

Consider the sequence 20, 27, 34, 41, 48, 55, 62, ... Notice that the difference between any two consecutive terms is _____. We say that this sequence has a ______

______ of 7. To find the next two terms in the sequence, you could add 7 to the last term to get 69, and then add 7 to 69 to get 76. But what if you wanted to find the 200^{th} term? It would take a long time to list all the terms. If you could find a rule for calculating the *n*th term of the sequence for any number *n*, you could find the 200^{th} term without having to list all the terms before it. This rule is called the ______ rule. In the investigation you will learn (actually review!) a method for writing a rule for any sequence that has a constant difference.

DRABBLE reprinted by permission of United Feature Syndicate, Inc.

Investigation 2.2: "Finding the Rule"

A.) Complete each table below. Find the difference between consecutive values.

n	1	2	3	4	5	6	7	8
<i>n</i> – 5	-4	-3	-2					
n	1	2	3	4	5	6	7	8
<i>4n</i> – 3	1	5	9					
. <u> </u>								
n	1	2	3	4	5	6	7	8
-2n + 5	3	1	-1					
n	1	2	3	4	5	6	7	8
3n - 2	1	4	7					
n	1	2	3	4	5	6	7	8
<i>-5n</i> + 7	2	-3	-8					

Differences:

B.) Did you spot the pattern? If a sequence has constant difference 4, then the number in front of the *n* (the coefficient of *n*) is _____. In general, if the difference between the values of consecutive terms of a sequence is always the same, say *m* (a constant), then the coefficient of *n* in the formula is _____.

Let's return to the sequence at the beginning of the lesson.

Term	1	2	3	4	5	6	7	•••	n
Value	20	27	34	41	48	55	62		

The constant difference is 7, so you know part of the rule is 7n. How do you find the rest of the rule?

C.) The first term (n = 1) of the sequence is 20, but if you apply the part of the rule you have so far, using n = 1, you get 7n = 7(1) = 7, not 20. So how should you fix the rule? How can you get from 7 to 20? What is the rule for this sequence?

D.) Check your rule by trying the rule with other terms in the sequence.

•Example 1: Find the rule for the sequence 7, 2, -3, -8, -13, -18, ...

The difference between the terms is always _____. So the rule is _____n + something. To find the unknown "something" (represented by c) replace the n in the rule with a term number. Try n = 1 and set the expression equal to 7 (because that is what the first term is equal to). Solve for c.

$$-5(1) + c = 7$$

Rules for sequences can be expressed using **function notation**. For this example, f(n) =______. In this case, function *f* takes an input value *n*, multiplies it by –5, and adds ______ to produce an output value.

You can find the value of any term in the sequence by substituting the term number for n into the function. To find the 20th term of this sequence, for instance, substitute 20 for n.

f(20) = -5(20) + 12 =_____

Rules that generate a sequence with a constant difference are **linear functions**.

•Example 2: If you place 200 points on a line, into how many non-overlapping rays and segments does it divide the line?

,

4
4-1-1-1

Points dividing the line	1	2	3	4	5	6	 n	 200
Non-overlapping rays	2	2	2					
Non-overlapping segments	0	1	2					
Total	2	3	4					

⇒ASSIGNMENT: _____