Lesson 4.3: Triangle Inequalities

-In this lesson you will:

- determine whether you can form a triangle from any three segments
- discover a relationship between the side lengths and angle measures of a triangle
- look for a relationship between the measure of the exterior angle of a triangle and the measures of the corresponding remote interior angles

If you are given three segments, will you always be able to form a triangle with those segments as sides? In the following investigation, you will explore this question.

Investigation 4.3.1: "What is the Shortest Path from A to B ?
A.) Construct a triangle with each set of segments as sides.

Given:

Construct: \triangle CAT

Given:

B.) You should have been able to construct $\Delta \mathrm{CAT}$, but not $\Delta \mathrm{FSH}$. Why? Discuss your results with others. State your observations as your next conjecture.

Triangle Inequality Conjecture (C-20)

The sum of the lengths of any two sides of a triangle is \qquad the length of the third side.

Investigation 4.3.2: "Where are the Largest and Smallest Angles?"

A.) Measure the angles in your triangles below. Label the angle with the greatest measure $\angle L$, the angle with the second greatest measure $\angle M$, and the smallest angle $\angle S$.

B.) Measure the three sides. Label the longest side l, the second longest side m, and the shortest side s.
C.) What side is opposite $\angle L$? \qquad What side is opposite of $\angle M$? \qquad What side is opposite of $\angle S$? \qquad —— What side is opposite of $\angle M$?
D.) Discuss your results with others. Fill in the conjecture below that states where the largest and smallest angles are in a triangle, in relation to the longest and shortest sides.

Side-Angle Inequality Conjecture (C-21)

In a triangle, if one side is longer than another side, then the angle opposite the longer side is than the angle opposite the shorter side.
*Add "exterior angle," "adjacent interior angle," and "remote interior angles" to your dictionary.

Remote interior angles
A.) Label the vertices and angles on the triangles below like the picture to the right.

B.) Measure the exterior angle x on both triangles using a protractor.
\#1 $x=$ \qquad \#2 $x=$ \qquad
C.) Measure the two remote interior angles, $\angle A$ and $\angle C$.
\#1 $m \angle A=$ \qquad $m \angle C=$ \qquad \#2 $m \angle A=$ \qquad $m \angle C=$
D.) How does the sum of $m \angle A$ and $m \angle C$ compare with x ?
E.) Discuss your results with your group. State your observations as a conjecture below.

Triangle Exterior Angle Conjecture (C-22)

The measure of an exterior angle of a triangle is \qquad to the sum of the measures of the remote interior angles.

The investigation may have convinced you that the Triangle Exterior Angle Conjecture is true, but can you explain why it is true for every triangle?
\qquad

