In this lesson you will:

• determine whether you can form a triangle from any three segments

• discover a relationship between the side lengths and angle measures of a triangle

• look for a relationship between the measure of the exterior angle of a triangle and the measures of the corresponding remote interior angles

If you are given three segments, will you always be able to form a triangle with those segments as sides? In the following investigation, you will explore this question.

Investigation 4.3.1: "What is the Shortest Path from A to B?

A.) Construct a triangle with each set of segments as sides.

Given:				
	č	Ă		
	Å		T	
	ċ			Ť

Construct: ΔCAT

Construct: ΔFSH

B.) You should have been able to construct ΔCAT , but not ΔFSH . Why? Discuss your results with others. State your observations as your next conjecture.

Triangle Inequality Conjecture (C-20)	
The sum of the lengths of any two sides of a triangle is	_ the

Investigation 4.3.2: "Where are the Largest and Smallest Angles?"

A.) Measure the angles in your triangles below. Label the angle with the greatest measure $\angle L$, the angle with the second greatest measure $\angle M$, and the smallest angle $\angle S$.

- B.) Measure the three sides. Label the longest side *l*, the second longest side *m*, and the shortest side *s*.
- C.) What side is opposite $\angle L$? _____ What side is opposite of $\angle M$? _____ What side is opposite of $\angle S$? _____
- D.) Discuss your results with others. Fill in the conjecture below that states where the largest and smallest angles are in a triangle, in relation to the longest and shortest sides.

Side-Angle Inequality Conjecture (C-21)

In a triangle, if one side is longer than another side, then the angle opposite the longer side is ______ than the angle opposite the shorter side.

```
*Add "exterior angle," "adjacent interior angle," and
"remote interior angles" to your dictionary.
```


A.) Label the vertices and angles on the triangles below like the picture to the right.

B.) Measure the exterior angle *x* on both triangles using a protractor.

#1 $x = _$ _____ #2 $x = _$ ____

C.) Measure the two remote interior angles, $\angle A$ and $\angle C$.

- #1 $m \angle A = _$ $m \angle C = _$ #2 $m \angle A = _$ $m \angle C = _$
- D.) How does the sum of $m \angle A$ and $m \angle C$ compare with *x*?

E.) Discuss your results with your group. State your observations as a conjecture below.

Triangle Exterior Angle Conjecture (C-22)

The measure of an exterior angle of a triangle is ______ to the sum of the measures of the remote interior angles.

The investigation may have convinced you that the Triangle Exterior Angle Conjecture is true, but can you explain *why* it is true for every triangle?