Lesson 6.2: Chord Properties

In this lesson you will:

- define central angle and inscribed angle
- investigate properties of chords of a circle

In the last lesson you discovered some properties of a tangent, a line that intersects the circle only ______. In this lesson you will investigate properties of a chord, a line segment whose ______ lie on the circle.

Investigation 6.2.1: "Defining Angles in a Circle"

Write a good definition of each boldfaced term. Discuss your definitions with others in your group. Agree on a common set of definitions for your class and add them to your vocabulary list.

Central Angle

 $\angle AOB$, $\angle DOA$, and $\angle DOB$ are central angles of circle *O*.

 $\angle PQR$, $\angle PQS$, $\angle RST$, $\angle QST$, and $\angle QSR$ are NOT central angles of circle *P*.

Inscribed Angle

 $\angle ABC$, $\angle BCD$, and $\angle CDE$ are inscribed angles.

 $\angle PQR$, $\angle STU$, and $\angle VWX$ are NOT inscribed angles.

Investigation 6.2.2: "Chords and Their Central Angles"

Next you will discover some properties of chords and central angles. You will also see a relationship between chords and arcs.

*<u>Open "Lesson 6.2 (Chord Properties) Geo Sketchpad.gsp" and go to the "Inv 2" tab/page</u>.

- A.) What is true about chords \overline{BC} and \overline{DE} ?
- B.) Drag different parts of your figure to confirm that the chords stay congruent.
- C.) Using the segment tool, construct segments \overline{AB} , \overline{AC} , \overline{AD} , and \overline{AE} .
- D.) Measure central angles $\angle CAB$ and $\angle DAE$. (Remember to measure an angle, make sure the vertex is the second point that you select.) How do the central angles compare?
- E.) Drag different parts of your figure. Is your statement in part D still true?
- F.) Share your results with others in your group. Then complete the conjecture below.

Chord Central Angles Conjecture (C-55)

If two chords in a circle are congruent, then they determine two central angles that are

- G.) Recall that the measure of an arc is defined as the measure of its central angle. Select point B, point C, and the circle, and choose **Measure** | **Arc Angle** to confirm this.
- H.) Select point D, point E, and the circle, and choose Measure | Arc Angle.
- I.) How do the intercepted arcs BC and DE compare?
- J.) Complete the conjecture below based on your observation from part I.

Chord Arcs Conjecture (C-56)

If two chords in a circle are congruent, then their ______ are congruent.

Investigation 6.2.3: "Chords and the Center of the Circle"

In this investigation you will discover relationships about a chord and the center of its circle.

*Go to the tab/page for "Inv 3."

- A.) Select chord \overline{BC} and point A, and choose **Construct** | **Perpendicular Line**.
- B.) Select chord \overline{DE} and point A, and choose **Construct** | **Perpendicular Line**.
- C.) Drag point C and observe the relationship between the chord and the line perpendicular to it from the center of the circle.
- D.) How does the perpendicular from the center of a circle to a chord divide the chord?
- E.) Based on this observation, complete the conjecture below.

Perpendicular to a Chord Conjecture (C-57)

The perpendicular from the center of a circle to a chord is the ______ of the chord.

- F.) Measure the distance from point A to \overline{BC} and the distance from point A to \overline{DE} . (Select a point and a segment, and choose **Measure** | **Distance**.) How do the distances compare?
- G.) Drag parts of your sketch and observe these distances. Are the results the same if you change the size of the circle and the length of the chords?
- H.) Based on your observations, complete the next conjecture.

Chord Distance to Center Conjecture (C-58)

Two congruent chords in a circle are ______ from the center of the circle.

Investigation 6.2.4: "Perpendicular Bisector of a Chord"

Next, you'll discover a property of perpendicular bisectors of chords.

*Go to the tab/page for "Inv 4."

- A.) Construct the midpoint of chord \overline{BC} . (Select segment \overline{BC} , and choose **Construct** | **Midpoint**.)
- B.) Label the midpoint D.
- C.) Construct a line through point D, perpendicular to \overline{BC} . (Select point D and segment \overline{BC} , and choose **Construct** | **Perpendicular Line**.)
- D.) Construct the midpoint of chord \overline{FG} . (Select segment \overline{FG} , and choose **Construct** | **Midpoint**.)
- E.) Label the midpoint H.
- F.) Construct a line through point H, perpendicular to \overline{FG} . (Select point H and segment \overline{FG} , and choose **Construct** | **Perpendicular Line**.)
- G.) What do you notice about the point of intersection of the two perpendicular bisectors? (Drag parts of your sketch to confirm that this is always true.)
- H.) Compare your result with the results of your group members. Based on your observations, complete the conjecture below.

Perpendicular Bisector of a Chord Conjecture (C-59)

The perpendicular bisector of a chord passes through the ______ of the circle.

