Lesson 6.7: Arc Length

-In this lesson you will:

- learn the difference between arc length and arc measures
- find a method for calculating arc length
- solve problems involving arc length

You have learned that the measure of a minor arc is equal to the measure of its
\qquad angle. On a clock, the measure of the arc from 12:00 to 4:00 is equal to the measure of the angle formed by the hour and minute hands. A circular clock is divided into 12 equal arcs, so the measure of each hour is $\frac{360^{\circ}}{12}$, or \qquad ${ }^{\circ}$. The measure of the arc from $12: 00$ to $4: 00$ is four times 30°, or \qquad ${ }^{\circ}$.

Notice that because the minute hand is longer, the tip of the minute hand must travel farther than the tip of the hour hand even though they both move 120° from 12:00 to 4:00. So the arc length is different even though the arc measure is the same!

* Add "arc measure" and "arc length" to your vocabulary list.

-Example 1: What fraction of the circle is each arc?
a.) $A B$ is what fraction of circle T ?
b.) $E E D$ is what fraction of circle O ?

c.) $E F$ is what fraction of circle P?

What do these fractions have to do with arc length? If you traveled halfway around a circle, you'd cover $1 / 2$ of its perimeter or circumference. If you went a quarter of the way around, you'd travel \qquad of its circumference. The arc length is some fraction of the circumference of its circle. The measure of an arc is calculated in units of \qquad , but arc length is calculated in units of \qquad _.

Investigation 6.7: "Finding the Arcs"
In this investigation you will find a method for calculating the arc length.
A.) For $A B, \varnothing E D$, and $G H$, find what fraction of the circle each arc is.

B.) Find the circumference of each circle.
C.) Combine the results of parts A and B to find the length of each arc.
D.) Generalize this method for finding the length of any arc, and us it complete the conjecture below.

Arc Length Conjecture (C-66)

The length of an arc equals the measure of the \qquad divided by \qquad ${ }^{\circ}$ multiplied by the
\bullet Example 2: If the radius of the circle is 24 cm and $m \angle B T A=60^{\circ}$, what is the length of $A B$?

- Example 3: If the length of $R O T$ is 116π meters, what is the radius of the circle?

