Lesson 7.3: Compositions of Transformations

In this lesson you will:

- find the single transformation equivalent to the composition of two translations
- define glide reflection

When you apply a transformation to a figure and then apply another transformation to its image, the resulting transformation is called a composition of transformations.
-Example 1: Triangle ABC with vertices $\mathrm{A}(-1,0), \mathrm{B}(4,0)$, and $\mathrm{C}(2,6)$ is first translated by the rule $(x, y) \rightarrow(x-6, y-5)$ to give the image $\Delta A^{\prime} B^{\prime} C^{\prime}$, and then $\Delta A^{\prime} B^{\prime} C^{\prime}$ is translated by the rule $(x, y) \rightarrow(x+14, y+3)$ to give the image $\Delta A " B " C^{\prime \prime}$.
a.) Give the coordinates of $\Delta A^{\prime} B^{\prime} C^{\prime}: A^{\prime}$ \qquad , \qquad), $\mathrm{B}^{\prime}($ \qquad , \qquad), C'(\qquad , _()

c.) Draw $\triangle A B C, \Delta A^{\prime} B^{\prime} C^{\prime}$, and $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ on the grid below.
d.) What single translation is equivalent to the composition of these two translations?

$$
(x, y) \rightarrow(\square)
$$

-Example 2

a.) On the grid below, draw $\triangle \mathrm{ABC}: \mathrm{A}(3,6), \mathrm{B}(9,3)$, and $\mathrm{C}(6,-3)$

b.) Suppose $\triangle A B C$ is reflected across the y-axis. Fill in the coordinates for $\Delta A^{\prime} B^{\prime} C^{\prime}$ and sketch it in a different color than $\triangle A B C$.
$A^{\prime}($, , _) , B'(\qquad ,), C'(\qquad , _()

The rule for this transformation is:

$$
(x, y) \rightarrow(\quad, \quad) .
$$

c.) Now translate the image $\Delta A^{\prime} B^{\prime} C^{\prime} 5$ units to the right and 6 units down.
What are the new coordinates of this triangle, ΔA " $B^{\prime \prime} C^{\prime \prime}$? Fill in the coordinates and sketch it in a different color.

A" \qquad ,), B"(\qquad , \qquad), C" \qquad , _()

The rule for this transformation is:

$$
(x, y) \rightarrow(\quad, \quad)
$$

d.) What one rule would transform $\triangle A B C$ to ΔA " $B^{\prime \prime} C$ " (the composition)?
\qquad , \qquad)

There are many other ways to combine transformations. Combining a translation with a reflection gives a special two-step transformation called glide reflection. A sequence of footsteps is a common example of glide reflection. *Add "glide reflection" to your vocabulary list.

\qquad

