Lesson 9.3: Two Special Right Triangles

In this lesson you will:

- discover a shortcut for finding an unknown side length in an isosceles right triangle (also called a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle)
- discover a shortcut for finding an unknown side length in a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle

In this lesson you will use the Pythagorean Theorem to discover some relationships between the sides of two special right triangles.

One of these special triangles is an isosceles right triangle, also called a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle. Each isosceles triangle is half a \qquad , so these triangles show up often in mathematics and engineering.

An isosceles right triangle

Investigation 9.3.1: "Two Special Right Triangles"

In this investigation you will simplify radicals to discover a relationship between the length of the legs and the length of the hypotenuse in a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle. To simplify a square root means to write it as a multiple of a smaller radical without using decimal approximations.
A.) Find the length of the hypotenuse of each isosceles right triangle at right. Simplify each square root.

B.) Use your results to complete the following table. Draw additional triangles as needed.

Length of each leg	1	2	3	4	5	6	7	\ldots	10	\ldots	l
Length of hypotenuse								\ldots		\ldots	

C.) Use your results to complete the following conjecture.

Isosceles Right Triangle Conjecture (C-83)

In an isosceles right triangle, if the legs have length l, then the hypotenuse has length \qquad .

Another special triangle is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, also called a $30^{\circ}-60^{\circ}$ right triangle, that is formed by bisecting any angle of an equilateral triangle. The $30^{\circ}-60^{\circ}-90^{\circ}$ triangle also shows up often in mathematics and engineering because it is half of an \qquad triangle. Let's prove it.

Developing Proof: Create a flowchart proof that the angle bisector through angle C in equilateral triangle ABC at right forms two congruent triangles, $\triangle A C D$ and $\triangle B C D$.

```
\triangleABC is equilateral
```



```
CD}\mathrm{ bisects }\angle
```

Additional questions about the $30^{\circ}-60^{\circ}-90^{\circ}$ triangle:

1. Why must the angles in $\triangle B C D$ be $30^{\circ}, 60^{\circ}$, and 90° ?
2. How does $B D$ compare to $A B$? How does $B D$ compare to $B C$?
3. In any $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, how dos the length of the hypotenuse compare to the length of the shorter leg?

Let's use this relationship between the shorter leg and the hypotenuse of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle and the Pythagorean Theorem to discover another relationship.

Investigation 9.3.2: " $30^{\circ}-60^{\circ}-90^{\circ}$ Triangles"
In this investigation you will simplify radicals to discover a relationship between the lengths of the shorter and longer legs in a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.

A.) Use the relationship from the developing proof activity above to find the length of the hypotenuse of each $30^{\circ}-60^{\circ}-90^{\circ}$ triangle at right. Then use the Pythagorean Theorem to calculate the length of the third side. Simplify each square root. Use your results to fill in the table below.

Length of shorter leg	1	2	3	4	5	6	7	\ldots	10	\ldots	a
Length of hypotenuse								\ldots		\ldots	
Length of longer leg								\ldots		\ldots	

B.) Using your results complete the conjecture below.

$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Conjecture (C-84)

In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, if the shorter leg has length a, then the longer leg has length \qquad and the hypotenuse has length \qquad .

You can use algebraic symbols to verify the $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Conjecture.

$$
a^{2}+b^{2}=c^{2}
$$

-Example 1: Find the lettered side lengths. All lengths are in centimeters.
a.

b.

